首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Learning to Extract a Video Sequence from a Single Motion-Blurred Image
【24h】

Learning to Extract a Video Sequence from a Single Motion-Blurred Image

机译:学习从单个运动模糊图像中提取视频序列

获取原文

摘要

We present a method to extract a video sequence from a single motion-blurred image. Motion-blurred images are the result of an averaging process, where instant frames are accumulated over time during the exposure of the sensor. Unfortunately, reversing this process is nontrivial. Firstly, averaging destroys the temporal ordering of the frames. Secondly, the recovery of a single frame is a blind deconvolution task, which is highly ill-posed. We present a deep learning scheme that gradually reconstructs a temporal ordering by sequentially extracting pairs of frames. Our main contribution is to introduce loss functions invariant to the temporal order. This lets a neural network choose during training what frame to output among the possible combinations. We also address the ill-posedness of deblurring by designing a network with a large receptive field and implemented via resampling to achieve a higher computational efficiency. Our proposed method can successfully retrieve sharp image sequences from a single motion blurred image and can generalize well on synthetic and real datasets captured with different cameras.
机译:我们提出一种从单个运动模糊图像中提取视频序列的方法。运动模糊的图像是平均过程的结果,在传感器曝光期间,即时帧随时间累积。不幸的是,逆转此过程并非易事。首先,平均破坏了帧的时间顺序。其次,恢复单个帧是一个盲的反卷积任务,这是病态严重的。我们提出了一种深度学习方案,该方案通过顺序提取成对的帧来逐步重建时间顺序。我们的主要贡献是引入对时间顺序不变的损失函数。这使神经网络可以在训练期间选择可能的组合中要输出的帧。我们还通过设计一个具有大接收域并通过重采样实现以实现更高计算效率的网络来解决去模糊的不良情况。我们提出的方法可以成功地从单个运动模糊图像中检索出清晰的图像序列,并且可以很好地推广到使用不同相机捕获的合成数据集和真实数据集上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号