首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Real-World Anomaly Detection in Surveillance Videos
【24h】

Real-World Anomaly Detection in Surveillance Videos

机译:监控视频中的真实异常检测

获取原文

摘要

Surveillance videos are able to capture a variety of realistic anomalies. In this paper, we propose to learn anomalies by exploiting both normal and anomalous videos. To avoid annotating the anomalous segments or clips in training videos, which is very time consuming, we propose to learn anomaly through the deep multiple instance ranking framework by leveraging weakly labeled training videos, i.e. the training labels (anomalous or normal) are at video-level instead of clip-level. In our approach, we consider normal and anomalous videos as bags and video segments as instances in multiple instance learning (MIL), and automatically learn a deep anomaly ranking model that predicts high anomaly scores for anomalous video segments. Furthermore, we introduce sparsity and temporal smoothness constraints in the ranking loss function to better localize anomaly during training. We also introduce a new large-scale first of its kind dataset of 128 hours of videos. It consists of 1900 long and untrimmed real-world surveillance videos, with 13 realistic anomalies such as fighting, road accident, burglary, robbery, etc. as well as normal activities. This dataset can be used for two tasks. First, general anomaly detection considering all anomalies in one group and all normal activities in another group. Second, for recognizing each of 13 anomalous activities. Our experimental results show that our MIL method for anomaly detection achieves significant improvement on anomaly detection performance as compared to the state-of-the-art approaches. We provide the results of several recent deep learning baselines on anomalous activity recognition. The low recognition performance of these baselines reveals that our dataset is very challenging and opens more opportunities for future work. The dataset is available at: http://crcv.ucf.edu/projects/real-world.
机译:监控视频能够捕获各种现实异常。在本文中,我们建议通过利用正常视频和异常视频来学习异常。为了避免注释训练视频中的异常片段或片段,这非常耗时,我们建议通过使用标记较弱的训练视频,通过深度多实例排名框架来学习异常,即训练标签(异常或正常)位于视频-级别而不是剪辑级别。在我们的方法中,我们将正常和异常视频视为包,将视频片段视为多实例学习(MIL)中的实例,并自动学习深度异常排名模型,该模型可预测异常视频片段的较高异常得分。此外,我们在排序损失函数中引入稀疏性和时间平滑性约束,以在训练过程中更好地定位异常。我们还引入了一个新的大规模大规模数据集,包含128小时的视频。它包含1900个长时间且未修剪的现实世界监控视频,其中包含13个现实异常,例如战斗,道路交通事故,盗窃,抢劫等以及正常活动。该数据集可用于两项任务。首先,一般异常检测要考虑一组中的所有异常以及另一组中的所有正常活动。其次,用于识别13种异常活动。我们的实验结果表明,与最先进的方法相比,我们用于异常检测的MIL方法在异常检测性能上取得了显着改善。我们提供了一些关于异常活动识别的最新深度学习基准的结果。这些基准的低识别性能表明我们的数据集非常具有挑战性,并为将来的工作打开了更多机会。该数据集位于:http://crcv.ucf.edu/projects/real-world。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号