首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >CSGNet: Neural Shape Parser for Constructive Solid Geometry
【24h】

CSGNet: Neural Shape Parser for Constructive Solid Geometry

机译:CSGNet:用于构造实体几何的神经形状解析器

获取原文

摘要

We present a neural architecture that takes as input a 2D or 3D shape and outputs a program that generates the shape. The instructions in our program are based on constructive solid geometry principles, i.e., a set of boolean operations on shape primitives defined recursively. Bottom-up techniques for this shape parsing task rely on primitive detection and are inherently slow since the search space over possible primitive combinations is large. In contrast, our model uses a recurrent neural network that parses the input shape in a top-down manner, which is significantly faster and yields a compact and easy-to-interpret sequence of modeling instructions. Our model is also more effective as a shape detector compared to existing state-of-the-art detection techniques. We finally demonstrate that our network can be trained on novel datasets without ground-truth program annotations through policy gradient techniques.
机译:我们提出了一种神经结构,该结构接受2D或3D形状作为输入,并输出生成该形状的程序。我们程序中的指令基于构造性实体几何原理,即,对递归定义的形状基元进行布尔运算的集合。由于可能的图元组合上的搜索空间很大,因此用于此形状解析任务的自底向上技术依赖于图元检测,并且固有地速度较慢。相反,我们的模型使用递归神经网络,该神经网络以自顶向下的方式解析输入形状,这明显更快,并且生成紧凑且易于理解的建模指令序列。与现有的最新检测技术相比,我们的模型作为形状检测器也更有效。最后,我们证明了我们的网络可以通过策略梯度技术在新颖的数据集上进行训练,而无需使用真实的程序注释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号