首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Pose-Robust Face Recognition via Deep Residual Equivariant Mapping
【24h】

Pose-Robust Face Recognition via Deep Residual Equivariant Mapping

机译:通过深度残差等变映射的姿势鲁棒人脸识别

获取原文

摘要

Face recognition achieves exceptional success thanks to the emergence of deep learning. However, many contemporary face recognition models still perform relatively poor in processing profile faces compared to frontal faces. A key reason is that the number of frontal and profile training faces are highly imbalanced - there are extensively more frontal training samples compared to profile ones. In addition, it is intrinsically hard to learn a deep representation that is geometrically invariant to large pose variations. In this study, we hypothesize that there is an inherent mapping between frontal and profile faces, and consequently, their discrepancy in the deep representation space can be bridged by an equivariant mapping. To exploit this mapping, we formulate a novel Deep Residual EquivAriant Mapping (DREAM) block, which is capable of adaptively adding residuals to the input deep representation to transform a profile face representation to a canonical pose that simplifies recognition. The DREAM block consistently enhances the performance of profile face recognition for many strong deep networks, including ResNet models, without deliberately augmenting training data of profile faces. The block is easy to use, light-weight, and can be implemented with a negligible computational overhead1.
机译:由于深度学习的出现,人脸识别取得了非凡的成功。然而,与正面人脸相比,许多当代人脸识别模型在处理轮廓人脸方面仍然表现相对较差。关键原因是额叶和轮廓训练脸的数量高度不平衡-与轮廓训练相比,额叶训练样本的数量更多。另外,从本质上讲,要学习对于大型姿势变化在几何上不变的深度表示,很难。在本研究中,我们假设正面和轮廓面之间存在固有映射,因此,它们在深度表示空间中的差异可以通过等变量映射来弥补。为了利用此映射,我们制定了一个新颖的“深度残差等效映射”(DREAM)块,该块能够将残差自适应地添加到输入的深度表示中,以将轮廓人脸表示转换为简化识别的规范姿势。对于许多强大的深度网络(包括ResNet模型),DREAM块不断提高轮廓人脸识别的性能,而无需故意增加轮廓人脸的训练数据。该模块易于使用,重量轻,并且可以以可忽略的计算开销实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号