首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation
【24h】

GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation

机译:GeoNet:用于联合深度和表面法线估计的几何神经网络

获取原文

摘要

In this paper, we propose Geometric Neural Network (GeoNet) to jointly predict depth and surface normal maps from a single image. Building on top of two-stream CNNs, our GeoNet incorporates geometric relation between depth and surface normal via the new depth-to-normal and normal-to-depth networks. Depth-to-normal network exploits the least square solution of surface normal from depth and improves its quality with a residual module. Normal-to-depth network, contrarily, refines the depth map based on the constraints from the surface normal through a kernel regression module, which has no parameter to learn. These two networks enforce the underlying model to efficiently predict depth and surface normal for high consistency and corresponding accuracy. Our experiments on NYU v2 dataset verify that our GeoNet is able to predict geometrically consistent depth and normal maps. It achieves top performance on surface normal estimation and is on par with state-of-the-art depth estimation methods.
机译:在本文中,我们提出了几何神经网络(GeoNet),可以从单个图像联合预测深度和表面法线贴图。我们的GeoNet建立在两流CNN的基础上,通过新的“深度到法线”和“法线到深度”网络整合了深度和表面法线之间的几何关系。深度到法线网络从深度出发利用表面法线的最小二乘解,并通过残差模块提高其质量。相反,法向深度网络根据表面法线的约束通过内核回归模块精炼深度图,该模块无参数可学习。这两个网络强制执行基本模型,以有效预测深度和表面法线,以实现高一致性和相应的准确性。我们在NYU v2数据集上进行的实验证明,我们的GeoNet能够预测几何上一致的深度和法线贴图。它在表面法线估计方面获得了最高的性能,并且与最新的深度估计方法相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号