首页> 外文会议>IEEE/ACM International Workshop on Refactoring >Toward Proactive Refactoring: An Exploratory Study on Decaying Modules
【24h】

Toward Proactive Refactoring: An Exploratory Study on Decaying Modules

机译:迈向主动重构:衰变模块探索性研究

获取原文

摘要

Source code quality is often measured using code smell, which is an indicator of design flaw or problem in the source code. Code smells can be detected using tools such as static analyzer that detects code smells based on source code metrics. Further, developers perform refactoring activities based on the result of such detection tools to improve source code quality. However, such approach can be considered as reactive refactoring, i.e., developers react to code smells after they occur. This means that developers first suffer the effects of low quality source code (e.g., low readability and understandability) before they start solving code smells. In this study, we focus on proactive refactoring, i.e., refactoring source code before it becomes smelly. This approach would allow developers to maintain source code quality without having to suffer the impact of code smells. To support the proactive refactoring process, we propose a technique to detect decaying modules, which are non-smelly modules that are about to become smelly. We present empirical studies on open source projects with the aim of studying the characteristics of decaying modules. Additionally, to facilitate developers in the refactoring planning process, we perform a study on using a machine learning technique to predict decaying modules and report a factor that contributes most to the performance of the model under consideration.
机译:通常使用代码气味来衡量源代码的质量,这是源代码中设计缺陷或问题的指标。可以使用诸如静态分析器之类的工具检测代码气味,该工具可以根据源代码指标检测代码气味。此外,开发人员根据此类检测工具的结果执行重构活动,以提高源代码质量。然而,这种方法可以被认为是反应性重构,即,开发人员在代码气味发生后对其做出反应。这意味着开发人员在开始解决代码异味之前首先要遭受低质量源代码的影响(例如,较低的可读性和可理解性)。在这项研究中,我们专注于主动重构,即在源代码变臭之前对其进行重构。这种方法将使开发人员可以保持源代码质量,而不必遭受代码气味的影响。为了支持主动重构过程,我们提出了一种检测衰减模块的技术,这些模块是即将散发臭味的非臭味模块。我们目前对开源项目进行实证研究,旨在研究衰减模块的特性。此外,为了方便开发人员进行重构计划过程,我们进行了一项有关使用机器学习技术来预测衰减模块并报告对所考虑模型的性能贡献最大的因素的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号