首页> 美国卫生研究院文献>ACS AuthorChoice >Refactoring the Embden–Meyerhof–ParnasPathway as a Whole of Portable GlucoBricks for Implantation of GlycolyticModules in Gram-Negative Bacteria
【2h】

Refactoring the Embden–Meyerhof–ParnasPathway as a Whole of Portable GlucoBricks for Implantation of GlycolyticModules in Gram-Negative Bacteria

机译:重构Embden–Meyerhof–Parnas整体途径的便携式糖化砖植入糖酵解革兰氏阴性细菌中的模块

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Embden–Meyerhof–Parnas (EMP) pathway is generally considered to be the biochemical standard for glucose catabolism. Alas, its native genomic organization and the control of gene expression in Escherichia coli are both very intricate, which limits the portability of the EMP pathway to other biotechnologically important bacterial hosts that lack the route. In this work, the genes encoding all the enzymes of the linear EMP route have been individually recruited from the genome of E. coli K-12, edited in silico to remove their endogenous regulatory signals, and synthesized de novo following a standard (GlucoBrick) that enables their grouping in the form of functional modules at the user’s will. After verifying their activity in several glycolytic mutants of E. coli, the versatility of these GlucoBricks was demonstrated in quantitative physiology tests and biochemical assays carried out in Pseudomonas putida KT2440 and P. aeruginosa PAO1 as the heterologous hosts. Specific configurations of GlucoBricks were also adopted to streamline the downward circulation of carbon from hexoses to pyruvatein E. coli recombinants, thereby resulting ina 3-fold increase of poly(3-hydroxybutyrate) synthesis from glucose.Refactoring whole metabolic blocks in the fashion described in thiswork thus eases the engineering of biochemical processes where theoptimization of carbon traffic is facilitated by the operation ofthe EMP pathway—which yields more ATP than other glycolyticroutes such as the Entner–Doudoroff pathway.
机译:Embden-Meyerhof-Parnas(EMP)途径通常被认为是葡萄糖分解代谢的生化标准。 las,其天然的基因组组织和大肠杆菌中基因表达的控制都非常复杂,这限制了EMP途径向缺乏该途径的其他生物技术上重要的细菌宿主的可移植性。在这项工作中,已从大肠杆菌K-12的基因组中单独募集了编码线性EMP途径所有酶的基因,在计算机上进行编辑以去除其内源调节信号,并按照标准重新合成(GlucoBrick)可以按照用户的意愿以功能模块的形式对它们进行分组。在验证了它们在大肠杆菌的几种糖酵解突变体中的活性后,这些蛋白在多功能假单胞菌(Pseudomonas putida)KT2440和铜绿假单胞菌PAO1中作为异源宿主进行了定量生理学测试和生化分析,证明了这些GlucoBricks的多功能性。还采用了GlucoBricks的特定配置来简化碳从己糖到丙酮酸的向下循环在大肠杆菌重组体中产生葡萄糖合成的聚(3-羟基丁酸酯)含量增加了3倍。以这种方式重构整个代谢块因此,这项工作简化了生化过程的工程设计,的运营促进了碳交通的优化。EMP途径-比其他糖酵解途径产生更多的ATP路线,例如Entner–Doudoroff路径。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号