【24h】

Covert Online Ethnography and Machine Learning for Detecting Individuals at Risk of Being Drawn into Online Sex Work

机译:将在线人种学和机器学习技术进行转换,以检测有被抽签危险的个人进行在线性工作

获取原文

摘要

How can we identify individuals at risk of being drawn into online sex work? The spread of online communication removes transaction costs and enables a greater number of people to be involved in illicit activities, including online sex trade. As a result, social media platforms often work as springboard for criminal careers posing a significant risk to the economy, public health and trust. Detecting deviant behaviors online is limited by the poor availability of ground-truth data and machine learning tools. Unlike prior work which focuses exclusively on either qualitative or quantitative methods, in this paper we combine covert online ethnography with semi-supervised learning methodologies, using data from a popular European adult forum. We obtained risk assessment results of 78 users using covert online ethnography, and set out to build a machine learning model that can predict the risk factor in other 28,832 users. Results show that a combination-based approach in which all features are used yields the most accurate results.
机译:我们如何确定有被卷入在线性工作风险的个人?在线交流的普及消除了交易成本,并使更多的人参与了包括在线性交易在内的非法活动。结果,社交媒体平台经常充当犯罪职业的跳板,对经济,公共卫生和信任构成重大风险。在线检测异常行为受到实际数据和机器学习工具可用性的限制。与先前的工作只专注于定性或定量方法不同,本文使用来自欧洲一个成人论坛的数据,将秘密的在线人种志与半监督学习方法相结合。我们使用秘密在线人种志获得了78位用户的风险评估结果,并着手建立一个可以预测其他28,832位用户风险因素的机器学习模型。结果表明,使用所有功能的基于组合的方法可产生最准确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号