【24h】

From Data Points to Data Curves: A New Approach on Big Data Curves Clustering

机译:从数据点到数据曲线:大数据曲线聚类的新方法

获取原文

摘要

In the new era of IoT, enormous real-values datasets are produced daily. Time series created by smart devices, financial data, weather analysis, medical applications, traffic control etc. become more and more important in human day life. Analyzing and clustering these time series or in general any kind of curve could be critical. In the current paper, a new methodology (BD2C) is presented, which applies text mining and pattern detection techniques in order to cluster curves according to their shape. Several experiments have been conducted on artificial and real datasets in order to present the accuracy, efficiency and rapid discovery of the best possible clustering that the proposed methodology can achieve.
机译:在物联网的新时代,每天都会产生大量的实值数据集。由智能设备,财务数据,天气分析,医疗应用,交通控制等创建的时间序列在人们的日常生活中变得越来越重要。分析和聚类这些时间序列或一般而言,任何类型的曲线都可能很关键。在当前的论文中,提出了一种新的方法(BD2C),该方法应用文本挖掘和模式检测技术以根据曲线的形状对其进行聚类。为了说明所提出的方法可以实现的最佳可能聚类的准确性,效率和快速发现,已经在人工和真实数据集上进行了一些实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号