首页> 外文会议>IEEE/ACIS International Conference on Computer and Information Science >Localization Strategy for Island Model Genetic Algorithm to Preserve Population Diversity
【24h】

Localization Strategy for Island Model Genetic Algorithm to Preserve Population Diversity

机译:保留种群多样性的岛屿模型遗传算法的定位策略

获取原文

摘要

Years after being firstly introduced by Fraser and remodeled for modern application by Bremermann, genetic algorithm (GA) has a significant progression to solve many kinds of optimization problems. GA also thrives into many variations of models and approaches. Multi-population or island model GA (IMGA) is one of the commonly used GA models. rMGA is a multi-population GA model objected to getting a better result (aimed to get global optimum) by intrinsically preserve its diversity. Localization strategy of IMGA is a new approach which sees an island as a single living environment for its individuals. An island's characteristic must be different compared to other islands. Operator parameter configuration or even its core engine (algorithm) represents the nature of an island. These differences will incline into different evolution tracks which can be its speed or pattern. Localization strategy for IMGA uses three kinds of single GA core: standard GA, pseudo GA, and informed GA. Localization strategy implements migration protocol and the bias value to control the movement. The experiment results showed that localization strategy for IMGA succeeds to solve 3-SAT with an excellent performance. This brand new approach is also proven to have a high consistency and durability.
机译:遗传算法(GA)在最初由Fraser引入并由Bremermann进行改造以用于现代应用的多年之后,在解决许多优化问题方面取得了重大进展。 Google Analytics(分析)还蓬勃发展为各种模型和方法。多人口或岛模型GA(IMGA)是常用的GA模型之一。 rMGA是一个多种群的GA模型,旨在通过固有地保留其多样性来获得更好的结果(旨在获得全局最优)。 IMGA的本地化策略是一种新方法,它将岛屿视为其个人的单一生活环境。与其他岛屿相比,一个岛屿的特征必须有所不同。操作员参数配置或什至是其核心引擎(算法)代表了孤岛的性质。这些差异将倾向于不同的演变轨迹,可能是其速度或模式。 IMGA的本地化策略使用三种单一的GA核心:标准GA,伪GA和通知GA。定位策略实现迁移协议和偏差值来控制运动。实验结果表明,IMGA的定位策略以优异的性能成功解决了3-SAT问题。这种全新的方法还被证明具有很高的一致性和耐用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号