首页> 外文会议>IEEE workshop on representation of visual scenes >Shape Tensors for Efficient and Learnable Indexing
【24h】

Shape Tensors for Efficient and Learnable Indexing

机译:形状张量以实现高效和易学的索引编制

获取原文
获取原文并翻译 | 示例

摘要

Multi-point geometry: The geometry of 1 point in N images under perspective projection has been thoroughly investigated, identifying bilinear, trilinear, and quadrilinear relations between the projections of 1 point in 2, 3 and 4 frames respectively. The dual problem - the geometry of N points in 1 image - has been studied mostly in the context of object recognition, often assuming weak perspective or affine projection. We provide here a complete description of this problem. We employ a formalism in which multi-frame and multi-point geometries appear in symmetry: points and projections are interchangeable. We then derive bilinear equations for 6 points (dual to 4-frame geometry), trilinear equations for 7 points (dual to 3-frame geometry), and quadrilinear equations for 8 points (dual to the epipolar geometry). We show that the quadrilinear equations are dependent on the the bilinear and trilinear equations, and we show that adding more points will not generate any new equation.rnApplications to reconstruction and recognition: The new equations are used to design new algorithms for the reconstruction of shape from many frames, and for learning invariant relations for indexing into a data-base. We describe algorithms which require matching 6 (or more) corresponding points from at least 4 images, 7 (or more) points from at least 3 images, or 8 (or more) points from at least 2 images. Unlike previous approaches, the equations developed here lead to direct and linear solutions without going through the cameras' geometry. Our final linear shape computation uses all the available data - all points and all frames simultaneously: it uses a factorization of the matrix of invariant relations into 2 components of rank 4, a shape matrix and a coordinate-system matrix.
机译:多点几何:对透视投影下N幅图像中1点的几何进行了深入研究,分别确定了2、3和4帧中1点的投影之间的双线性,三线性和四线性关系。对偶问题-1张图像中N个点的几何形状-大多是在对象识别的背景下进行研究的,通常假设其透视或仿射投影较弱。我们在此提供此问题的完整描述。我们采用形式主义,其中多框架和多点几何形状对称出现:点和投影可以互换。然后,我们导出6个点的双线性方程(双至4帧几何),7个点的三线性方程(双至3帧几何)和8个点的四线性方程(对极几何)。我们证明了四线性方程依赖于双线性和三线性方程,并且表明增加更多的点不会生成任何新的方程。rn在重构和识别中的应用:新的方程用于设计新的形状重构算法从许多框架中获取信息,并学习用于索引到数据库的不变关系。我们描述了需要匹配至少4张图像中的6个(或更多)对应点,至少3张图像中的7个(或更多)点或至少2张图像中的8个(或更多)点的算法。与以前的方法不同,此处开发的方程式可产生直接和线性解,而无需经历照相机的几何形状。我们最终的线性形状计算使用所有可用的数据-所有点和所有帧同时进行:将不变关系矩阵分解为等级4的2个分量,形状矩阵和坐标系矩阵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号