首页> 外文会议>IEEE Symposium on VLSI Circuits >A 141 UW, 2.46 PJ/Neuron Binarized Convolutional Neural Network Based Self-Learning Speech Recognition Processor in 28NM CMOS
【24h】

A 141 UW, 2.46 PJ/Neuron Binarized Convolutional Neural Network Based Self-Learning Speech Recognition Processor in 28NM CMOS

机译:基于28NM CMOS的141 UW,2.46 PJ / Neuron二值卷积神经网络自学习语音识别处理器

获取原文

摘要

An ultra-low power speech recognition processor is implemented in 28 nm CMOS technology, which is based on an optimized binary convolutional neural network (BCNN). A tailored self-learning mechanism is implemented to learn the features of users and improve recognition accuracy on the fly. Measurement results show that this processor supports real time speech recognition with power consumption of 141 uW and energy efficiency of 2.46 pJ/Neuron when working at 2.5 MHz, while achieving at most 98.6% recognition accuracy.
机译:一种超低功耗语音识别处理器采用28 nm CMOS技术实现,该技术基于优化的二进制卷积神经网络(BCNN)。实施了量身定制的自学习机制,以学习用户的特征并实时提高识别准确性。测量结果表明,该处理器支持实时语音识别,功耗为141 uW,在2.5 MHz时工作时的能量效率为2.46 pJ / Neuron,同时实现了最高98.6%的识别精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号