首页> 外文会议>IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology >Prediction of anti-EGFR drug resistance base on binding free energy and hydrogen bond analysis
【24h】

Prediction of anti-EGFR drug resistance base on binding free energy and hydrogen bond analysis

机译:基于结合自由能和氢键分析的抗EGFR药物耐药性预测

获取原文
获取原文并翻译 | 示例

摘要

Mutations in EGFR kinase domain can cause non-small-cell lung cancer, which is one of the most lethal diseases in the world. However, current therapy is limited by the drug resistance effect in different EGFR mutants. There is an urgent demand for developing computational methods to predict drug resisted mutations. In this study, we use quantum mechanics and molecular mechanics models to generate EGFR mutants, and apply molecular dynamic to simulate EGFR-drug interactions. Hydrogen bonds and binding free energy are used to reveal the underlying principle of drug resistance in EGFR. The results show that drug resisted mutants do not establish hydrogen bond between the drug and the protein molecule while having large binding free energy. These properties can be used to predict resistance to anti-EGFR drugs due to protein mutations.
机译:EGFR激酶结构域的突变可引起非小细胞肺癌,这是世界上最致命的疾病之一。然而,当前的治疗受到不同EGFR突变体中药物抗性作用的限制。迫切需要开发预测药物抗性突变的计算方法。在这项研究中,我们使用量子力学和分子力学模型来生成EGFR突变体,并应用分子动力学来模拟EGFR-药物相互作用。氢键和结合自由能用于揭示EGFR耐药性的基本原理。结果表明,抗药性突变体在具有较大的结合自由能的情况下,并未在药物与蛋白质分子之间建立氢键。这些特性可用于预测由于蛋白质突变引起的对抗EGFR药物的耐药性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号