首页> 外文会议>IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology >Predicting protein crystallization using a simple scoring card method
【24h】

Predicting protein crystallization using a simple scoring card method

机译:使用简单的计分卡方法预测蛋白质的结晶

获取原文
获取原文并翻译 | 示例

摘要

Many computational methods have been developed to predict protein crystallization. Most methods use amino acid and dipeptide compositions as part of the informative features. To advance the prediction accuracy, the support vector machine (SVM) based classifiers and ensemble approaches were effective and commonly-used techniques. However, these techniques suffer from the low interpretation ability of insight into crystallization. In this study, we utilize a newly-developed scoring card method (SCM) with a dipeptide composition feature to predict protein crystallization. This SCM classifier obtains prediction results 74%, 0.55 and 0.83 for accuracy, sensitivity and specificity, respectively, which is comparable to the SVM classifier using the same benchmarks. The experimental results show that the SCM classifier has advantages of simplicity, high interpretability, and high accuracy in predicting protein crystallization, compared with existing SVM-basedensemble classifiers.
机译:已经开发出许多计算方法来预测蛋白质的结晶。大多数方法使用氨基酸和二肽组成作为信息特征的一部分。为了提高预测精度,基于支持向量机(SVM)的分类器和集成方法是有效且常用的技术。然而,这些技术的缺点是对结晶的洞察力低。在这项研究中,我们利用具有二肽组成特征的新开发的计分卡方法(SCM)来预测蛋白质的结晶。该SCM分类器的准确性,敏感性和特异性分别获得74%,0.55和0.83的预测结果,与使用相同基准的SVM分类器相当。实验结果表明,与现有的基于SVM的集成分类器相比,SCM分类器具有简单,可解释性高和预测蛋白质结晶准确度高的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号