首页> 外文会议>2019 IEEE International Conference on Computational Electromagnetics >Solving Full-Wave Nonlinear Inverse Scattering Problems by Deep Learning Schemes
【24h】

Solving Full-Wave Nonlinear Inverse Scattering Problems by Deep Learning Schemes

机译:通过深度学习方案解决全波非线性逆散射问题

获取原文
获取原文并翻译 | 示例

摘要

This paper aims to solve a full-wave inverse scattering problem, which is a quantitative imaging problem, i.e., to reconstruct the permittivities of dielectric scatterers from the knowledge of measured scattering data. Scatterers are represented in pixel basis, which is a versatile approach since the value of permittivity of each pixel is an independent parameter. This paper compares three different deep learning schemes in solving full-wave nonlinear ISPs. It is well known that in order to make machine learning more powerful when solving a particular problem, researchers must have a deep understanding of the corresponding forward problem. The same applies to inverse scattering problems. The concept of induced current plays an essential role in the proposed CNN technique, which enables us to design architecture of learning machine such that unnecessary computational effort spent in learning wave physics is minimized or avoided. Several representative tests are carried out, and it is demonstrated that the proposed CNN scheme outperforms a brute-force application of CNN.
机译:本文旨在解决全波逆散射问题,这是一个定量成像问题,即从实测散射数据的知识重建介电散射体的介电常数。散射体以像素为单位表示,这是一种通用方法,因为每个像素的介电常数是一个独立的参数。本文比较了三种解决全波非线性ISP的深度学习方案。众所周知,为了使机器学习在解决特定问题时更加强大,研究人员必须对相应的正题有深刻的理解。反散射问题也是如此。感应电流的概念在所提出的CNN技术中起着至关重要的作用,它使我们能够设计学习机的体系结构,从而最大程度地减少或避免了学习波物理所花费的不必要的计算量。进行了几次有代表性的测试,并证明了所提出的CNN方案优于CNN的蛮力应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号