首页> 外文会议>IEEE International Symposium on Olfaction and Electronic Nose >A Minimum Distance Inliers Probablity (MDIP) Feature Selection Method To Enhance Gas Classification For An Electronic Nose System
【24h】

A Minimum Distance Inliers Probablity (MDIP) Feature Selection Method To Enhance Gas Classification For An Electronic Nose System

机译:用于增强电子鼻系统气体分类的最小距离惰性概率(MDIP)特征选择方法

获取原文

摘要

To extract as much information as possible from the gas sensor responses of an electronic nose (E-Nose) system, feature extraction methods are adopted to obtain meaningful information of data. However, among a large quantity of the extracted features, only a few are actually informative for gas classification. Even worse, some of the features may degrade the accuracy of classification. To solve this problem, we propose a minimum distance inliers probability (MDIP) feature selection (FS) method that eliminates unnecessary features by considering their degree of clustering and degree of separation. The performance was validated using an open-access dataset. After applying the MDIP method, the number of features was reduced from 48 to 18 in average, while the average classification accuracy was improved from 46.45% to 80.6%, validating the efficiency of the MDIP method.
机译:为了从电子鼻(E-Nose)系统的气体传感器响应中提取尽可能多的信息,采用特征提取方法以获得有意义的数据信息。但是,在大量提取的特征中,实际上只有少数几个对气体分类具有指导意义。更糟糕的是,某些功能可能会降低分类的准确性。为了解决这个问题,我们提出了一种最小距离离群概率(MDIP)特征选择(FS)方法,该方法通过考虑不必要的特征的聚类程度和分离程度来消除不必要的特征。使用开放访问数据集验证了性能。应用MDIP方法后,特征数量从平均48个减少到18个,而平均分类精度从46.45%提高到80.6%,验证了MDIP方法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号