首页> 外文会议>IEEE International Symposium on Computer-Based Medical Systems >Efficiently Indexing Multiple Repositories of Medical Image Databases
【24h】

Efficiently Indexing Multiple Repositories of Medical Image Databases

机译:有效索引医学图像数据库的多个存储库

获取原文

摘要

Performing content-based image retrieval over large repositories of medical images demands efficient computational techniques. The use of such techniques is intended to speed up the work of physicians, who often have to deal with information from multiple data repositories. When dealing with multiple data repositories, the common computational approach is to search each repository separately and merge the multiple results into one final response, which slows down the whole process. This can be improved if we build a mechanism able to search several repositories as if they were a single one, i.e. a mechanism to search the whole domain of medical images. Aiming at this goal, we propose the Domain Index, a new category of index structures aimed at efficiently searching domains of data, regardless of the repository to which they belong. To evaluate our proposal, we carried out experiments over multiple mammography repositories involving k Nearest Neighbor (kNN) and Range queries. The results show that images from any repository are seamlessly retrieved, even sustaining gains in performance of up to 36% in kNN queries and up to 7% in Range queries. The experimental evaluation shows that the Domain Index allows fast retrieval from multiple data repositories for medical systems, allowing a better performance in similarity queries over them.
机译:在医学图像的大型存储库上执行基于内容的图像检索需要高效的计算技术。此类技术的使用旨在加速医师的工作,而医师通常不得不处理来自多个数据存储库的信息。当处理多个数据存储库时,常用的计算方法是分别搜索每个存储库并将多个结果合并为一个最终响应,这会减慢整个过程。如果我们建立一种能够搜索多个存储库的机制,就好像它们是单个存储库一样,即搜索医学图像整个域的机制,则可以改善这一点。为了实现这一目标,我们提出了域索引,这是一类新的索引结构,旨在有效地搜索数据域,而与它们所属的存储库无关。为了评估我们的建议,我们在多个乳腺X线摄影库上进行了实验,涉及到k个最近邻(kNN)和Range查询。结果表明,可以无缝检索任何存储库中的图像,甚至可以在kNN查询中保持高达36%的性能提升,在Range查询中保持高达7%的性能提升。实验评估表明,域索引允许从医疗系统的多个数据存储库中快速检索,从而在针对它们的相似性查询中具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号