首页> 外文会议>IEEE International Symposium on Computer-Based Medical Systems >Automatic Sleep Stage Classification Applying Machine Learning Algorithms on EEG Recordings
【24h】

Automatic Sleep Stage Classification Applying Machine Learning Algorithms on EEG Recordings

机译:自动睡眠阶段分类将机器学习算法应用于脑电图记录

获取原文

摘要

This paper focuses on developing a novel approach to automatic sleep stage classification based on electroencephalographic (EEG) data. The proposed methodology employs contemporary mathematical tools such as the synchronization likelihood and graph theory metrics applied on sleep EEG data. The derived features are then fitted into three different machine learning techniques, namely k-nearest neighbors, support vector machines and neural networks. The evaluation of their comparative performance is investigated according to their accuracy. Interestingly, the support vector machine achieves the maximum possible accuracy, i.e., 89.07%, which renders it as a suitable method for sleep stage classification.
机译:本文着重于开发一种基于脑电图(EEG)数据的自动睡眠阶段分类的新方法。所提出的方法采用当代数学工具,例如应用于睡眠EEG数据的同步可能性和图论度量。然后将派生的特征拟合到三种不同的机器学习技术中,即k最近邻,支持向量机和神经网络。根据其准确性对比较性能进行评估。有趣的是,支持向量机实现了最大可能的精度,即89.07%,这使其成为用于睡眠阶段分类的合适方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号