首页> 外文会议>IEEE International Conference on Systems, Man, and Cybernetics;SMC >Evolving predator control programs for an actual hexapod robot predator
【24h】

Evolving predator control programs for an actual hexapod robot predator

机译:实际六足机器人捕食者不断发展的捕食者控制程序

获取原文

摘要

In the development of autonomous robots, control program learning systems are important since they allow the robots to adapt to changes in their surroundings. Evolutionary Computation (EC) is a method that is used widely in learning systems. In previous research, we used a Cyclic Genetic Algorithm (CGA), a form of EC, to evolve a simulated predator robot to test the effectiveness of a learning system in the predator/prey problem. The learned control program performed search, chase, and capture behavior using 64 sensor states relative to the nearest obstacle and the target, a simulated prey robot. In this paper, we present the results of a new set of trials, which were tested on the actual robots. The actual robots successfully performed desired behaviors, showing the effectiveness of the CGA learning system.
机译:在自主机器人的开发中,控制程序学习系统非常重要,因为它们可以使机器人适应周围环境的变化。进化计算(EC)是一种在学习系统中广泛使用的方法。在先前的研究中,我们使用了一种EC形式的循环遗传算法(CGA)来进化一个模拟的捕食者机器人,以测试学习系统在捕食者/被捕食者问题中的有效性。学习到的控制程序使用64个传感器状态(相对于最近的障碍物和目标)(模拟的猎物机器人)执行搜索,追踪和捕获行为。在本文中,我们介绍了一组新的试验结果,并在实际的机器人上进行了测试。实际的机器人成功地执行了预期的行为,显示了CGA学习系统的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号