首页> 外文会议>IEEE International Conference on Systems, Man, and Cybernetics;SMC >A robust on-line learning algorithm for type-2 fuzzy neural networks and its experimental evaluation on an autonomous tractor
【24h】

A robust on-line learning algorithm for type-2 fuzzy neural networks and its experimental evaluation on an autonomous tractor

机译:一种用于2型模糊神经网络的鲁棒在线学习算法及其在自动拖拉机上的实验评估

获取原文

摘要

Production machines, especially in agriculture, with higher efficiencies will be very important in the future because of the limited agricultural areas in the world and the high energy and labor costs. In order to increase the capacity of agricultural machinery, one can think to further increase the size of the machines. However, the limits in this direction will soon be reached as there is a maximum size to still allow road transport. On the other hand, energy costs are constantly increasing, such that the energy use should be minimized. A better option would be to use advanced learning algorithms, which can learn the system dynamics online, for the control of the production machines in order to increase their effectiveness. In this study, a Takagi-Sugeno-Kang type-2 fuzzy neural network with a sliding mode control theory-based learning algorithm is proposed for the control of the yaw dynamics of an autonomous tractor which includes various uncertainties, disturbances and nonlinearities, especially coming from the hydraulic sub systems. Experimental results show the efficacy and the efficiency of the proposed learning algorithm.
机译:由于世界上有限的农业地区以及高昂的能源和劳动力成本,未来具有更高效率的生产机器(特别是在农业中)将变得非常重要。为了增加农业机械的容量,可以考虑进一步增加机械的尺寸。但是,由于仍允许道路运输的最大尺寸,将很快达到该方向的限制。另一方面,能源成本不断增加,因此应尽量减少能源使用。更好的选择是使用高级学习算法,该算法可以在线学习系统动力学,以控制生产机器,以提高其效率。在这项研究中,提出了一种基于滑模控制理论的学习算法的Takagi-Sugeno-Kang 2型模糊神经网络,用于控制自动拖拉机的偏航动力学,其中包括各种不确定性,干扰和非线性,尤其是未来来自液压子系统。实验结果表明了该算法的有效性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号