首页> 外文会议>IEEE International Conference on System Analysis and Intelligent Computing >Parameters Optimization Method of the Information-Extreme Object Recognition System on the Terrain
【24h】

Parameters Optimization Method of the Information-Extreme Object Recognition System on the Terrain

机译:地形信息极端物体识别系统的参数优化方法

获取原文

摘要

Proposed method for the synthesis of information extreme classifier of images with rough binary encoding of sparse histogram of frequency of occurrence of visual words, to provide a computationally efficient decision rules by small volume dataset with reliability which approaches boundary maximum value Improved method based on population search to adjust parameters of the extractor features that allows you to get the best value in the information and cost meaning of the parameters functioning system recognition of images in a few iterations of the algorithm work. This experiment shows the advantage of the use swarm algorithm for scanning images, which is three-fold increase in performance compared to known algorithms RASW and ESS. The practical value of the results is to obtain well-functioning designing algorithms capable of learning image recognition, which operates under conditions of resource limitations and information.
机译:提出了一种利用视觉单词出现频率的稀疏直方图的粗糙二进制编码对图像信息极端分类器进行合成的方法,以通过小量数据集提供计算效率高的决策规则,并具有接近边界最大值的可靠性,基于人口搜索的改进方法调整提取器功能的参数,使您可以在算法工作的几次迭代中,在参数的信息和成本含义方面获得最佳价值,从而使系统识别图像。该实验显示了使用群体算法扫描图像的优势,与已知算法RASW和ESS相比,性能提高了三倍。结果的实用价值是获得能够学习图像识别的功能良好的设计算法,该算法在资源限制和信息条件下运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号