首页> 外文会议>IEEE International Conference on Smart Instrumentation, Measurement and Application >Online Modelling and Forecasting of the Production of Isopropyl Myristate using TD- HMLP Neural Network
【24h】

Online Modelling and Forecasting of the Production of Isopropyl Myristate using TD- HMLP Neural Network

机译:TD-HMLP神经网络对肉豆蔻酸异丙酯产量的在线建模和预测

获取原文

摘要

The objective of this study is to measure modelling performance using an online modelling and forecasting for the fabrication of Isopropyl Myristate in Semibatch Reactive Distillation. A network which called Trend Data Hybrid Multilayered Perceptron Network was applied to compare with conventional Hybrid Multilayered Perceptron Network. These two networks were coupled with an online learning algorithm as a nonlinear model. The input-output data for data training were determined from simulation of Isopropyl Myristate production using Aspen Plus. An online model was used to predict the percentage of Isopropyl Myristate fabrication for the determination and direction of future trends. The results of the both networks performance are based on the one step ahead forecasting, multi-step ahead forecasting and adjusted R square. The results of the multi step ahead forecasting indicated that Trend Data-Hybrid Multilayered Perceptron Network is preferable than the conventional Hybrid Multilayered Perceptron Network. Trend Data-Hybrid Multilayered Perceptron Network has improved the online forecasting performance in the generated of more promising steps in multi-step ahead forecasting.
机译:这项研究的目的是使用在线模型和预测来预测半间歇反应精馏中肉豆蔻酸异丙酯的制备过程中的建模性能。应用一个称为趋势数据混合多层感知器网络的网络与常规混合多层感知器网络进行比较。这两个网络与作为非线性模型的在线学习算法结合在一起。用于数据训练的输入输出数据是通过使用Aspen Plus模拟肉豆蔻酸异丙酯生产来确定的。在线模型用于预测肉豆蔻酸异丙酯制造的百分比,以确定和确定未来趋势。两种网络性能的结果均基于提前一步预测,提前多步预测和调整后的R平方。多步超前预测的结果表明,趋势数据混合多层感知器网络比常规混合多层感知器网络更好。趋势数据混合多层感知器网络在多步超前预测中产生了更有希望的步骤,从而提高了在线预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号