首页> 外文会议>IEEE International Conference on Signal and Image Processing >An Object-Based Method Based on a Novel Statistical Distance for SAR Image Change Detection
【24h】

An Object-Based Method Based on a Novel Statistical Distance for SAR Image Change Detection

机译:基于新型统计距离的基于目标的SAR图像变化检测方法

获取原文

摘要

This paper introduces an object-based method based on a new statistical distance for SAR image change detection. Firstly, multi-temporal segmentation is carried out to segment two temporal SAR images simultaneously. It considers the homogeneity in two temporal images, and could generate homogeneous objects in spectral, spatial and temporal. In addition, through setting different segmentation parameters, the multi-temporal images can be segmented in a set of scales. This process exploits the advantages of OBIA that could effectively reduce spurious changes, and considers the scale of change detection task. Secondly, a multiplicative noise model called Nakagami-Rayleigh distribution is employed to describe SAR data, and then applied to Bayesian formulation. Thus, a new statistical distance that is insensitive to speckles is derived to measure the distances between pairs of parcels. Then, cluster ensemble algorithm is utilized to improve accuracy of individual result in each scale to obtain the final change detection map. Finally, multi-temporal Radarsat-2 images are employed to verify the effectiveness of the proposed method compared with other four methods.
机译:本文介绍了一种基于统计距离的基于对象的SAR图像变化检测方法。首先,进行多时间分割以同时分割两个时间SAR图像。它考虑了两个时间图像中的同质性,并可能在光谱,空间和时间上生成同质对象。另外,通过设置不同的分割参数,可以将多时相图像分割成一组比例尺。此过程利用了OBIA的优势,该优势可以有效减少虚假更改,并考虑了更改检测任务的规模。其次,采用称为Nakagami-Rayleigh分布的乘法噪声模型描述SAR数据,然后将其应用于贝叶斯公式。因此,导出了对斑点不敏感的新统计距离,以测量成对的包裹之间的距离。然后,利用聚类集成算法提高各个尺度下单个结果的准确性,以获得最终的变化检测图。最后,与其他四种方法相比,采用多时相Radarsat-2图像来验证该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号