首页> 外文会议>IEEE International Conference on Robotics & Automation >Autonomous optimization of fine motions for robotic assembly
【24h】

Autonomous optimization of fine motions for robotic assembly

机译:机器人装配精细运动的自主优化

获取原文

摘要

In the past, robotic assembly has required rigid fixturing and special purpose robotic tools for every assembly component. Unfortunately, rigid fixtures and special purpose robotic tools often have to be customized for varying geometries. Alternatively, it is possible to operate in a semi-structured environment, defined by the use of softer fixtures (e.g. pickup bin) and softer robotic tools (e.g. suction cups or compliant pads) that can be used for many assembly applications without modification, but they demand specific motion plans that can tolerate greater positional uncertainty. We have developed a system that supports autonomous generation of parameterized fine motion plans for assembly that are robust under positional uncertainty and compliance introduced by the use of a suction cup instead of a gripper. To accomplish this a classifier is trained, implemented and tested for performance in the semi-structured environment for distinguishing between a failed or successful assembly. The trained classifier is then integrated with the entire system and many robot-attended experiments are performed that vary the fine motion parameters, and optimize them for successful outcomes using an Interval Estimation optimization algorithm. An approach to machine learning based on Support Vector Machines and Principal Component Analysis is used to make the optimization autonomous. We achieved a 99.7% classification accuracy with the trained classifier and by running repeated robot-attended experiments with artificial positional uncertainty and optimizing fine motion parameters, we were able to achieve a 38% improvement compared to fine motion plans with initial best guess parameters.
机译:过去,机器人组装对于每个组装组件都需要刚性夹具和专用机器人工具。不幸的是,经常必须为各种几何形状定制刚性夹具和专用机器人工具。或者,可以在半结构化的环境中操作,该环境是通过使用可用于许多装配应用而无需进行修改的较软的固定装置(例如,拾取箱)和较软的机器人工具(例如,吸盘或柔性垫)来定义的,但是他们需要可以容忍更大位置不确定性的特定运动计划。我们已经开发了一种系统,该系统支持自动生成用于装配的参数化精细运动计划,该计划在通过使用吸盘(而不是夹具)引入的位置不确定性和顺应性下具有鲁棒性。为此,对分类器进行了培训,实施和测试,以在半结构化环境中进行性能区分,以区分组装失败还是成功。然后将训练有素的分类器与整个系统集成在一起,并执行许多机器人参与的实验,这些实验会改变精细运动参数,并使用间隔估计优化算法对它们进行优化,以取得成功的结果。一种基于支持向量机和主成分分析的机器学习方法被用来使优化自动化。通过训练有素的分类器,我们实现了99.7%的分类精度,并且通过运行具有人工位置不确定性并优化精细运动参数的重复机器人参与的实验,与具有初始最佳猜测参数的精细运动计划相比,我们能够实现38%的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号