首页> 外文会议>IEEE International Conference on Power and Energy Applications >Early Warning Method for Power Station Auxiliary Failure Considering Large-Scale Operating Conditions
【24h】

Early Warning Method for Power Station Auxiliary Failure Considering Large-Scale Operating Conditions

机译:考虑大规模运行条件的电站辅助故障预警方法

获取原文

摘要

Large-scale deep variable load of thermal power units will increase the hidden trouble of auxiliary equipment failure. Timely detection of minor faults and early warning are conducive to the safe operation of units. With the large-scale deep variable load of units, the operating conditions of auxiliary equipment also change in a large range, and the operating parameters fluctuate in a large range, which directly affects the accuracy of fault early warning algorithm based on operation data. In order to solve this problem, this paper uses a multivariate state estimation technique (MSET) algorithm for fault early warning. Firstly, the cluster method is used to divide the operating conditions of units, and process memory matrix is constructed under different operating conditions for modeling and calculation. The simulation results show that compared with the traditional method using one process memory matrix this method significantly improves the accuracy of fault early warning.
机译:火电机组的大型深变负荷将增加辅助设备故障的隐患。及时发现小故障并进行预警,有利于机组的安全运行。随着机组的大规模深变负荷,辅助设备的运行条件也在较大范围内变化,运行参数在较大范围内波动,直接影响基于运行数据的故障预警算法的准确性。为了解决这个问题,本文采用多元状态估计技术(MSET)算法进行故障预警。首先,采用聚类法对单元的运行条件进行划分,并在不同的运行条件下构造过程存储矩阵进行建模和计算。仿真结果表明,与传统的使用一个过程存储矩阵的方法相比,该方法可以显着提高故障预警的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号