首页> 外文会议>IEEE International Conference on Knowledge Innovation and Invention >Parallel Nest-Site Selection Algorithm for Traveling Salesman Problems
【24h】

Parallel Nest-Site Selection Algorithm for Traveling Salesman Problems

机译:旅行商问题的并行嵌套站点选择算法

获取原文

摘要

The Nest-Site Selection (NeSS) algorithm is a combinatorial optimization algorithm inspired by the nest-site selection behavior of honeybee swarms. NeSS uses a number of devoted bees committed to a nest-site, called quorum mechanism, as a stopping criterion of the algorithm instead of the maximum cycle number (MCN). It is generally reached before the MCN that is used in typical swarm intelligence algorithms. Therefore, this mechanism helps the algorithm to converge more quickly. However, there are a number of time-sensitive optimization applications that need solutions within a specific time frame. This paper thus proposes a parallel framework of the NeSS algorithm to improve the performance and efficiency of the algorithm. In the original NeSS algorithm, explorer bees, committed bees, observers, and resting bees are four types of bees that work as a separate and independent entity. The task of each bee in the original NeSS algorithm is sequential executed. In this work, the bees in the same group perform their task simultaneously. A parallel NeSS program is developed using the C language and the OpenMP library. We use the Traveling Salesman Problems (TSP), which is a classic combinatorial problem, to evaluate the scalability performance of the proposed parallel framework by varying number of processors and number of cities in the TSP.
机译:巢穴选择(NeSS)算法是一种组合优化算法,其灵感来自蜜蜂群的巢穴选择行为。 NeSS使用致力于定巢机制的大量蜜蜂(称为定额机制)作为算法的停止标准,而不是最大循环数(MCN)。通常在典型群体智能算法中使用的MCN之前就可以达到此目标。因此,这种机制有助于算法更快地收敛。但是,有许多对时间敏感的优化应用程序需要在特定时间范围内解决方案。因此,本文提出了NeSS算法的并行框架,以提高算法的性能和效率。在原始的NeSS算法中,探索者蜜蜂,定身蜜蜂,观察者和静止蜜蜂是作为独立实体的四种类型的蜜蜂。原始NeSS算法中的每只蜜蜂的任务都按顺序执行。在这项工作中,同一组蜜蜂同时执行任务。使用C语言和OpenMP库开发了并行的NeSS程序。我们使用旅行商问题(TSP)(这是一个经典的组合问题),通过改变TSP中的处理器数量和城市数量来评估所提出的并行框架的可伸缩性性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号