首页> 外文会议>IEEE International Conference on Information and Computer Technologies >A Comparative Study of Deep Learning Approaches for Query-Focused Extractive Multi-Document Summarization
【24h】

A Comparative Study of Deep Learning Approaches for Query-Focused Extractive Multi-Document Summarization

机译:面向查询的抽取式多文档摘要的深度学习方法的比较研究

获取原文

摘要

Query-focused multi-document summarization aims to produce a single, short document that summarizes a set of documents that are relevant to a given query. During the past few years, deep learning approaches have been utilized to generate summaries in an abstractive or extractive manner. In this study, we employ six deep neural network approaches to solving a query-focused extractive multi-document summarization task and compare their performances. To the best of our knowledge, our study is the first to compare deep learning techniques on extractive query-focused multi-document summarization. Our experiments with DUC 2005-2007 benchmark datasets show that Bi-LSTM with Max-pooling achieves the highest performance among the methods compared.
机译:以查询为中心的多文档摘要旨在生成一个简短的文档,该文档汇总了与给定查询相关的一组文档。在过去的几年中,深度学习方法已被用于以抽象或提取的方式生成摘要。在这项研究中,我们采用了六种深度神经网络方法来解决以查询为中心的提取式多文档摘要任务,并比较它们的性能。据我们所知,我们的研究是第一个将深度学习技术与以提取查询为重点的多文档摘要进行比较的研究。我们使用DUC 2005-2007基准数据集进行的实验表明,采用Max-pooling的Bi-LSTM在所比较的方法中实现了最高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号