首页> 外文期刊>Knowledge-Based Systems >A hybrid deep learning architecture for opinion-oriented multi-document summarization based on multi-feature fusion
【24h】

A hybrid deep learning architecture for opinion-oriented multi-document summarization based on multi-feature fusion

机译:基于多特征融合的意见导向多文件摘要的混合深度学习架构

获取原文
获取原文并翻译 | 示例

摘要

Opinion summarization is a process to produce concise summaries from a large number of opinionated texts. In this paper, we present a novel deep-learning-based method for the generic opinion-oriented extractive summarization of multi-documents (also known as RDLS). The method comprises sentiment analysis embedding space (SAS), text summarization embedding spaces (TSS) and opinion summarizer module (OSM). SAS employs recurrent neural network (RNN) which is composed by long shortterm memory (LSTM) to take advantage of sequential processing and overcome several flaws in traditional methods, where order and information about a word have vanished. Furthermore, it uses sentiment knowledge, sentiment shifter rules and multiple strategies to overcome the existing drawbacks. TSS exploits multiple sources of statistical and linguistic knowledge features to augment word-level embedding and extract a proper set of sentences from multiple documents. TSS also uses the Restricted Boltzmann Machine algorithm to enhance and optimize those features and improve resultant accuracy without losing any important information. OSM consists of two phases: sentence classification and sentence selection which work together to produce a useful summary. Experiment results show that RDLS outperforms other existing methods. Moreover, the ensemble of statistical and linguistic knowledge, sentiment knowledge, sentiment shifter rules and word-embedding model allows RLDS to achieve significant accuracy. (C) 2021 The Authors. Published by Elsevier B.V.
机译:意见摘要是一种从大量自传文本制作简明摘要的过程。在本文中,我们提出了一种基于深度学习的基于深度学习的方法,用于多文件的普通意见导向的提取摘要(也称为RDL)。该方法包括嵌入空间(SAS),文本摘要嵌入空格(TSS)和意见摘要器模块(OSM)的情绪分析。 SAS采用经常性的神经网络(RNN),该网络(RNN)由Long Shretterm Memory(LSTM)组成,以利用顺序处理,并以传统方法克服几个缺陷,其中有关一词的订单和信息已经消失。此外,它使用情感知识,情绪变化器规则和多种策略来克服现有的缺点。 TSS利用多种统计和语言知识功能来源,以增加单词级嵌入并从多个文档中提取一组正确的句子。 TSS还使用受限制的Boltzmann机算法来增强和优化这些功能,并在不丢失任何重要信息的情况下提高结果准确性。 OSM由两个阶段组成:句子分类和句子选择,共同生成有用的摘要。实验结果表明,RDLS优于其他现有方法。此外,统计和语言知识,情感知识,情绪变速器规则和嵌入模型的集合允许RLD实现显着的准确性。 (c)提交人2021年。由elsevier b.v出版。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号