首页> 外文会议>IEEE International Conference on Information and Computer Technologies >The Research on Morpheme-Based Mongolian-Chinese Neural Machine Translation
【24h】

The Research on Morpheme-Based Mongolian-Chinese Neural Machine Translation

机译:基于词素的蒙汉神经机器翻译研究

获取原文

摘要

In view of the rich morphology of Mongolian language and the limited vocabulary of neural machine translation, this paper firstly segmenting Mongolian words from different granularity, which are the segmentation of separates morphological suffixes and the segmentation of Ligatures morphological suffixes. For Chinese, we use word segmentation and word division. Then, we studied the morpheme-based Mongolian-Chinese end-to-end neural machine translation under the framework of bidirectional encoder and attention-based decoder. The experimental results show that the segmentation of Mongolian word effectively solves the data sparsity of Mongolian, and the morpheme-based Mongolian-Chinese neural machine translation model can improve the quality of machine translation. The best NIST and BLEU values of the morpheme-based Mongolian-Chinese Neural Machine Translation results were respectively reached 9.4216 and 0.6320.
机译:鉴于蒙古语形态丰富,神经机器翻译词汇量有限,本文首先从不同的粒度切分蒙古语单词,分别是分离的词缀后缀的切分和连字的词缀后缀的切分。对于中文,我们使用分词和分词。然后,我们在双向编码器和基于注意力的解码器的框架下研究了基于词素的蒙汉端到端神经机器翻译。实验结果表明,蒙古语单词的分割有效地解决了蒙古语的数据稀疏性,基于词素的蒙汉神经机器翻译模型可以提高机器翻译的质量。基于词素的蒙汉神经机器翻译结果的最佳NIST和BLEU值分别达到9.4216和0.6320。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号