【24h】

O-MAP: A per-component online anomaly predicting method for Cloud infrastructure

机译:O-MAP:针对云基础架构的按组件在线异常预测方法

获取原文

摘要

Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. It will be a daunting task for system administrators to manually keep track of the execution status of a large number of virtual machines all the time. Anomaly prediction is an effective approach to enhancing availability and reliability of Cloud infrastructures. In this paper, we propose O-MAP, a supervised online anomaly prediction scheme based on Hidden Markov Model (HMM). Our algorithm is basically distributed and runs locally on each computing machine on the Cloud in order to achieve high scalability. Experiments performed on real data sets validate the fact that our algorithm can achieve high prediction accuracy for a range of system anomalies with low overhead to the infrastructure in Cloud.
机译:由于各种原因(例如资源争用,软件错误和硬件故障),虚拟化的云系统容易出现性能异常。对于系统管理员而言,始终手动跟踪大量虚拟机的执行状态将是一项艰巨的任务。异常预测是提高云基础架构可用性和可靠性的有效方法。在本文中,我们提出了一种基于隐马尔可夫模型(HMM)的有监督在线异常预测方案O-MAP。我们的算法基本上是分布式的,并在云上的每台计算机上本地运行,以实现高可扩展性。在真实数据集上进行的实验证实了以下事实,即我们的算法可以为一系列系统异常实现高预测精度,而云中的基础架构的开销却很低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号