首页> 外文会议>IEEE International Conference on Industrial Engineering and Applications >A Comparative Study Using Deep Learning and Support Vector Regression for Electricity Price Forecasting in Smart Grids
【24h】

A Comparative Study Using Deep Learning and Support Vector Regression for Electricity Price Forecasting in Smart Grids

机译:基于深度学习和支持向量回归的智能电网电价预测比较研究

获取原文

摘要

High price volatility can directly affect the electricity market stability in smart grids. Thus, effective and accurate price forecasts must be implemented to avoid the serious consequences of price dynamics. This study proposes two intelligent techniques to tackle the Electricity Price Forecasting (EPF) problem using machine learning. Firstly, a Support Vector Regression (SVR) model is used to predict the hourly-price. Secondly, a Deep Learning (DL) model is implemented and compared with the SVR model. The results show that the two proposed models are effective tools for EPF. However, the DL approach outperforms the SVR model, with average root mean square error value of 1.1165 and 0.416 respectively.
机译:高价格波动会直接影响智能电网中的电力市场稳定性。因此,必须实施有效而准确的价格预测,以避免价格动态的严重后果。这项研究提出了两种智能技术,可以使用机器学习来解决电价预测(EPF)问题。首先,使用支持向量回归(SVR)模型来预测小时价格。其次,实现了深度学习(DL)模型并将其与SVR模型进行比较。结果表明,所提出的两个模型是EPF的有效工具。但是,DL方法优于SVR模型,平均均方根误差值分别为1.1165和0.416。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号