首页> 外文会议>IEEE International Conference on Image Processing;ICIP 2012 >Multi-stage vector quantization towards low bit rate visual search
【24h】

Multi-stage vector quantization towards low bit rate visual search

机译:面向低比特率视觉搜索的多级矢量量化

获取原文

摘要

While much progress has been made in mobile visual search, user experiences still relate to the query transmission latency, especially over a bandwidth-constrained wireless link. Low bit rate visual search paradigm has been well advocated in both academic and industrial endeavors, which directly extracts and sends compact visual descriptor(s) rather than sending a query image. Recent advances in compact descriptor design have advocated the use of compressed bag-of-words histogram, which has shown superior performance over other alternatives. However, existing works focus on descriptor compactness, regardless of time cost and memory requirements on the extraction pipeline, which in turn is crucial for the mobile end development. In this paper, we investigate the problem of designing a memory-light descriptor extraction scheme based upon the so-called multi-stage vector quantization. Our scheme starts by quantizing local patches with a small codebook, and the resulting quantization residual is subsequently compensated by a product quantizer. The design of both quantizers are based upon improving PSNR, which would drop a lot through quantization. PSNR is quantitatively shown to be highly correlated with retrieval and matching accuracy. Extensive evaluation on MPEG Compact Descriptor for Visual Search (CDVS) dataset, has reported superior performance over the state-of-the-art.
机译:尽管移动视觉搜索已经取得了很大进步,但是用户体验仍然与查询传输延迟有关,尤其是在带宽受限的无线链路上。低比特率视觉搜索范例已在学术和工业领域中得到了广泛提倡,该范例直接提取并发送紧凑的视觉描述符,而不发送查询图像。压缩描述符设计的最新进展提倡使用压缩的词袋直方图,该直方图已显示出优于其他方法的性能。但是,现有的工作集中在描述符的紧凑性上,而与提取管线上的时间成本和内存要求无关,而这又对移动端开发至关重要。在本文中,我们研究了基于所谓的多级矢量量化设计存储光描述符提取方案的问题。我们的方案开始于用一本小的码本对局部色块进行量化,然后通过乘积量化器对所得的量化残差进行补偿。两种量化器的设计均基于提高的PSNR,这会因量化而下降很多。 PSNR定量显示与检索和匹配精度高度相关。对MPEG视觉搜索紧凑描述符(CDVS)数据集的广泛评估已报告了优于最新技术的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号