首页> 外文会议>IEEE International Conference on Image Processing;ICIP 2012 >Active learning for tag recommendation utilizing on-line photos lacking tags
【24h】

Active learning for tag recommendation utilizing on-line photos lacking tags

机译:利用缺少标签的在线照片主动学习标签推荐

获取原文

摘要

Recommending text tags for on-line photos is useful for Internet photo services. Typical solutions to this problem require analysis of the correlation among different attributes of the photos, including the correlation between the textual features and visual features computed from a photo. However, most on-line photos have very few tags or even no tags, and thus they contribute little or none to the analysis of tag-photo correlation, which is a key component in those schemes that rely on such analysis for tag recommendation. To address this practical challenge, we propose an active learning method for incorporating photos with no or few tags so as to enhance the correlation analysis for improved performance in tag recommendation. We demonstrate the effectiveness of the proposed approach using a dataset of more than 33,000 photos collected from Flickr.
机译:推荐在线照片的文本标签对于Internet照片服务很有用。该问题的典型解决方案需要分析照片的不同属性之间的相关性,包括从照片计算出的文本特征和视觉特征之间的相关性。但是,大多数在线照片的标签很少,甚至没有标签,因此它们对标签照片相关性的分析几乎没有贡献,而对标签照片相关性的分析则贡献很小甚至没有,这是那些依靠此类分析进行标签推荐的方案中的关键组成部分。为了解决这一实际挑战,我们提出了一种主动学习方法,用于合并没有标签或标签很少的照片,从而增强相关性分析以提高标签推荐的性能。我们使用从Flickr收集的超过33,000张照片的数据集证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号