首页> 外文会议>IEEE International Conference on Image Processing;ICIP 2012 >Image retrieval based on classified vector quantization using color local thresholding classifier
【24h】

Image retrieval based on classified vector quantization using color local thresholding classifier

机译:基于颜色局部阈值分类器的分类矢量量化图像检索

获取原文

摘要

A method of natural image classification by an effective color quadtree segmentation together with a more effective codebook with the color local thresholding classifier for content-based image retrieval (CBIR) is proposed. The vector quantization (VQ) based image retrieval schemes have good performance, but the importance of color edge intensive blocks is neglected. Our proposed method has two main improvements. First, quadtree segmentation based on both hue and gray-level information is applied to classify the blocks into the homogeneous and high-detail ones. Second, a color local thresholding classifier is proposed to further classify the high-detail blocks based on edge information. Simulation results show that our proposed scheme outperforms the existing methods, including the Quadtree CVQ-based scheme, the VQ-based scheme, and other methods.
机译:提出了一种通过有效的颜色四叉树分割以及具有颜色局部阈值分类器的更有效的码本对基于内容的图像检索(CBIR)进行自然图像分类的方法。基于矢量量化(VQ)的图像检索方案具有良好的性能,但是忽略了色彩边缘密集块的重要性。我们提出的方法有两个主要改进。首先,基于色调和灰度级信息的四叉树分割被应用于将块分类为同构块和高细节块。其次,提出了一种颜色局部阈值分类器,以基于边缘信息进一步对高细节块进行分类。仿真结果表明,本文提出的方案优于基于四叉树基于CVQ的方案,基于VQ的方案以及其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号