首页> 外文会议>IEEE International Conference on Image Processing;ICIP 2012 >Locating binary features for keypoint recognition using noncooperative games
【24h】

Locating binary features for keypoint recognition using noncooperative games

机译:使用非合作游戏定位二进制特征以进行关键点识别

获取原文

摘要

Many applications in computer vision rely on determining the correspondence between two images that share an overlapping region. One way to establish this correspondence is by matching binary keypoint descriptors from both images. Although, these descriptors are efficiently computed with bits produced by an arrangement of binary features (pattern), their matching performance falls short in comparison with other more elaborated descriptors such as SIFT. We present an approach based on noncooperative game theory for computing the locations of every binary feature in a pattern, improving the performance of binary-feature-based matchers. We propose a simultaneous two-player zero-sum game in which a maximizer wants to increase a payoff by selecting the possible locations for the features; a minimizer wants to decrease the payoff by selecting a pair of keypoints to confuse the maximizer; and the payoff matrix is computed from the pixel intensities across the pixel neighborhood of the keypoints. We use the best locations from the obtained maximizer's optimal policy for locating every binary feature in the pattern. Our evaluation of this approach coupled with Ferns shows an improvement in matching keypoints, in particular those with similar texture. Moreover, our approach improves the matching performance when fewer bits are required.
机译:计算机视觉中的许多应用都依赖于确定共享重叠区域的两个图像之间的对应关系。建立这种对应关系的一种方法是通过匹配两个图像的二进制关键点描述符。尽管这些描述符是用二进制特征(模式)的排列产生的比特有效地计算的,但是与其他更详细的描述符(例如SIFT)相比,它们的匹配性能不足。我们提出了一种基于非合作博弈的方法来计算模式中每个二进制特征的位置,从而提高了基于二进制特征的匹配器的性能。我们提出了一个两人同时玩的零和游戏,其中最大化器希望通过选择特征的可能位置来增加收益。最小化器希望通过选择一对关键点来混淆最大化器以减少收益;回报矩阵是根据关键点像素附近的像素强度计算得出的。我们使用获得的最大化器的最佳策略中的最佳位置来定位模式中的每个二进制特征。我们对该方法与Ferns的结合进行的评估显示,在匹配关键点(尤其是具有相似纹理的关键点)方面有所改进。此外,当需要更少的位时,我们的方法可以提高匹配性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号