首页> 外文会议>IEEE International Conference on Image Processing;ICIP 2012 >Wide baseline stereo object matching using minimal cost flow algorithm
【24h】

Wide baseline stereo object matching using minimal cost flow algorithm

机译:使用最小成本流算法进行宽基线立体目标匹配

获取原文

摘要

Monocular vision-based vehicle detection is a low-cost solution for active safety and driver assistance systems (ASDA). However, the depth estimation deviates its true value when the flat ground assumption does not hold. In this paper, we propose a stereo approach with a large baseline to address the issue without extracting three-dimensional features from disparity map. The proposed system first searches vehicle template among possible discrete rectangle boxes in the image pair. The system detects the presence, and estimates the distance of a vehicle simultaneously. This joint problem of detection and matching can be formulated as a minimal cost flow problem, which can be solved efficiently. The experimental results show that not only we have a redundant monocular vision system, but also the performance of both detection and range estimation is significantly enhanced.
机译:基于单眼视觉的车辆检测是主动安全和驾驶员辅助系统(ASDA)的低成本解决方案。但是,当平坦地面假设不成立时,深度估计会偏离其真实值。在本文中,我们提出了一种具有较大基线的立体方法来解决该问题,而无需从视差图中提取三维特征。所提出的系统首先在图像对中可能的离散矩形框中搜索车辆模板。该系统检测存在,并同时估计车辆的距离。这种检测和匹配的联合问题可以表述为最小的成本流问题,可以有效解决。实验结果表明,我们不仅拥有冗余的单眼视觉系统,而且检测和距离估计的性能都得到了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号