首页> 外文会议>IEEE International Conference on Image Processing;ICIP 2012 >Multi-target tracking by discriminative analysis on Riemannian manifold
【24h】

Multi-target tracking by discriminative analysis on Riemannian manifold

机译:黎曼流形的判别分析的多目标跟踪

获取原文

摘要

This paper addresses the problem of multi-target tracking in crowded scenes from a single camera. We propose an algorithm for learning discriminative appearance models for different targets. These appearance models are based on covariance descriptor extracted from tracklets given by a short-term tracking algorithm. Short-term tracking relies on object descriptors tuned by a controller which copes with context variation over time. We link tracklets by using discriminative analysis on a Riemannian manifold. Our evaluation shows that by applying this discriminative analysis, we can reduce false alarms and identity switches, not only for tracking in a single camera but also for matching object appearances between non-overlapping cameras.
机译:本文解决了单摄像机在拥挤场景中进行多目标跟踪的问题。我们提出了一种用于学习不同目标的判别外观模型的算法。这些外观模型基于从短期跟踪算法给出的小轨道提取的协方差描述符。短期跟踪依赖于由控制器调整的对象描述符,该对象描述符可应对上下文随时间的变化。我们通过在黎曼流形上使用判别分析来链接小径。我们的评估表明,通过应用这种判别分析,我们不仅可以在单个摄像机中进行跟踪,还可以在不重叠的摄像机之间匹配对象外观,从而减少错误警报和身份切换。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号