首页> 外文会议>IEEE International Conference on Image Processing;ICIP 2012 >Robust and efficient point registration based on clusters and Generalized Radial Basis Functions (C-GRBF)
【24h】

Robust and efficient point registration based on clusters and Generalized Radial Basis Functions (C-GRBF)

机译:基于聚类和广义径向基函数(C-GRBF)的鲁棒高效的点配准

获取原文

摘要

Radial Basis Functions (RBF) are effective in modeling regularization stabilizers, and have been successfully utilized in several point-based registration algorithms. Unfortunately the solutions usually require the inversion of a matrix or solving a linear system, whose computational cost grows rapidly with the increase of the input data size. In this paper, we present a fast and robust approximation remedy for this issue. Our model formulates the registration objective function under the Generalized Radial Basis Function (GRBF) framework w.r.t the cluster centers of one point set. With fewer variables, an computationally efficient registration is achieved, which updates the non-rigid transformation and the correspondence matrix simultaneously. Since the cluster centers often capture the global structure of the point sets very well, enhanced registration robustness is also resulted due to the less likelihood of trapping into local minima. This is especially beneficial in the context of large or/and unevenly distributed data sets. By means of experiments on real and synthetic data, we demonstrate the improvements made over several state-of-the-art solutions.
机译:径向基函数(RBF)在对正则化稳定器进行建模时非常有效,并且已成功用于几种基于点的配准算法中。不幸的是,解决方案通常需要矩阵求逆或求解线性系统,其计算成本随着输入数据大小的增加而迅速增长。在本文中,我们针对此问题提出了一种快速而稳健的近似补救措施。我们的模型在广义径向基函数(GRBF)框架下制定了具有一个点集的聚类中心的配准目标函数。使用较少的变量,可以获得计算上有效的配准,该配准可以同时更新非刚性变换和对应矩阵。由于聚类中心经常很好地捕获点集的全局结构,因此由于陷入局部极小值的可能性较小,因此还增强了配准鲁棒性。这在大型或/和不均匀分布的数据集的情况下特别有利。通过对真实数据和合成数据的实验,我们展示了对几种最新解决方案的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号