首页> 外文会议>IEEE International Conference on Image Processing;ICIP 2012 >Recognitionwith raw canonical phonetic movement and handshape subunits on videos of continuous Sign Language
【24h】

Recognitionwith raw canonical phonetic movement and handshape subunits on videos of continuous Sign Language

机译:连续手语视频中具有原始规范语音运动和手形亚基的识别

获取原文

摘要

The visual processing of Sign Language (SL) videos offers multiple interdisciplinary challenges for image processing and recognition. Based on tracking and visual feature extraction, we investigate SL visual phonetic modeling by exploiting statistical subunit (SU) models of movement-position and handshape. We further propose a new framework to construct a data-driven lexicon that retains phonetics' movement information and to perform automatic recognition of continuous SL videos. We construct phonetically meaningful transition SU, named as raw canonical phonetic subunits (SU-CanRaw). Then, we integrate via a Hidden Markov Model multistream scheme the SU-CanRaw extended for both hands, with handshape SU, based on our previous work on Affine-invariant Shape-Appearance Models. By applying the all-inclusive framework on continuous SL videos, we automatically generate a data-driven lexicon that can be further exploited, for automatic analysis of SL corpora, and continuous SL recognition. The recognition experiments, conducted on a newly acquired continuous SL corpus, lead to promising results.
机译:手语(SL)视频的视觉处理为图像处理和识别提出了跨学科挑战。基于跟踪和视觉特征提取,我们通过利用运动位置和手形的统计子单元(SU)模型研究SL视觉语音建模。我们进一步提出了一个新的框架,以构建一个保留语音的运动信息并自动识别连续SL视频的数据驱动词典。我们构建语音有意义的过渡SU,称为原始规范语音子单元(SU-CanRaw)。然后,基于我们先前在仿射不变形状外观模型上的工作,我们通过隐马尔可夫模型多流方案整合了SU-CanRaw扩展为双手,并具有手形SU。通过将全包框架应用于连续的SL视频,我们会自动生成一个数据驱动的词典,可以进一步利用该词典来自动分析SL语料库和连续的SL识别。在新近获得的连续SL语料库上进行的识别实验产生了可喜的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号