首页> 外文会议>IEEE International conference on e-business engineering >Personalized Recommendation of E-Commerce Website Category Hierarchy Based on Web Usage Mining and Multidimensional Scaling
【24h】

Personalized Recommendation of E-Commerce Website Category Hierarchy Based on Web Usage Mining and Multidimensional Scaling

机译:基于Web使用率挖掘和多维尺度的电子商务网站类别层次结构个性化推荐

获取原文

摘要

The purpose of this paper is to study personalized needs of e-commerce website category hierarchy based on users' mental models by means of Multidimensional Scaling and Web Usage Mining. The users' browsing category paths in an e-commerce website is extracted based on the Web Usage Mining, and the Multidimensional Scaling was used to probe the structure and composition of the users' mental models of website category hierarchy based on their browsing category paths, at last, users' personalized needs can be identified. Three million web log data records were collected for experimental study. The experimental results show the proposed method is efficient to discover users' personalized needs of expected category hierarchy based on large scale web log data automatically and efficiently.
机译:本文的目的是通过多维标度和Web用法挖掘研究基于用户心理模型的电子商务网站类别层次结构的个性化需求。基于Web用法挖掘,提取电子商务网站中用户的浏览类别路径,并使用多维尺度分析基于用户的浏览类别路径来探究用户的网站类别层次结构心理模型的结构和组成,最后,可以确定用户的个性化需求。收集了300万个Web日志数据记录用于实验研究。实验结果表明,该方法能有效,高效地发现基于大规模网络日志数据的用户个性化期望类别层次需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号