首页> 外文会议>IEEE International Conference on Computing, Communication and Security >Benchmarking datasets for Anomaly-based Network Intrusion Detection: KDD CUP 99 alternatives
【24h】

Benchmarking datasets for Anomaly-based Network Intrusion Detection: KDD CUP 99 alternatives

机译:基于异常的网络入侵检测的基准数据集:KDD CUP 99替代品

获取原文

摘要

Machine Learning has been steadily gaining traction for its use in Anomaly-based Network Intrusion Detection Systems (A-NIDS). Research into this domain is frequently performed using the KDD CUP 99 dataset as a benchmark. Several studies question its usability while constructing a contemporary NIDS, due to the skewed response distribution, non-stationarity, and failure to incorporate modern attacks. In this paper, we compare the performance for KDD-99 alternatives when trained using classification models commonly found in literature: Neural Network, Support Vector Machine, Decision Tree, Random Forest, Naive Bayes and K-Means. Applying the SMOTE oversampling technique and random undersampling, we create a balanced version of NSL-KDD and prove that skewed target classes in KDD-99 and NSL-KDD hamper the efficacy of classifiers on minority classes (U2R and R2L), leading to possible security risks. We explore UNSW-NB15, a modern substitute to KDD-99 with greater uniformity of pattern distribution. We benchmark this dataset before and after SMOTE oversampling to observe the effect on minority performance. Our results indicate that classifiers trained on UNSW-NB15 match or better the Weighted F1-Score of those trained on NSL-KDD and KDD-99 in the binary case, thus advocating UNSW-NB15 as a modern substitute to these datasets.
机译:机器学习在基于异常的网络入侵检测系统(A-NIDS)中的使用一直在稳步增长。经常使用KDD CUP 99数据集作为基准来对该领域进行研究。由于响应分布偏斜,不平稳以及无法纳入现代攻击,一些研究对构建现代NIDS时的可用性提出了质疑。在本文中,我们比较了使用文献中常见的分类模型训练时KDD-99替代方案的性能:神经网络,支持向量机,决策树,随机森林,朴素贝叶斯和K-Means。应用SMOTE过采样技术和随机欠采样,我们创建了NSL-KDD的平衡版本,并证明KDD-99和NSL-KDD中偏斜的目标类妨碍了少数类(U2R和R2L)上分类器的有效性,从而可能带来安全性风险。我们探索UNSW-NB15,它是KDD-99的现代替代品,具有更均匀的图案分布。我们在SMOTE过采样之前和之后对该数据集进行基准测试,以观察其对少数族裔表现的影响。我们的结果表明,在二元案例中,使用UNSW-NB15训练的分类器与使用NSL-KDD和KDD-99训练的分类器的加权F1-分数更高或更佳,因此提倡将UNSW-NB15作为这些数据集的现代替代品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号