首页> 外文会议>IEEE International Conference on Computer Vision;ICCV 2009 >Robust graph-cut scene segmentation and reconstruction for free-viewpoint video of complex dynamic scenes
【24h】

Robust graph-cut scene segmentation and reconstruction for free-viewpoint video of complex dynamic scenes

机译:复杂动态场景的自由视点视频的鲁棒图割场景分割和重构

获取原文

摘要

Current state-of-the-art image-based scene reconstruction techniques are capable of generating high-fidelity 3D models when used under controlled capture conditions. However, they are often inadequate when used in more challenging outdoor environments with moving cameras. In this case, algorithms must be able to cope with relatively large calibration and segmentation errors as well as input images separated by a wide-baseline and possibly captured at different resolutions. In this paper, we propose a technique which, under these challenging conditions, is able to efficiently compute a high-quality scene representation via graph-cut optimisation of an energy function combining multiple image cues with strong priors. Robustness is achieved by jointly optimising scene segmentation and multiple view reconstruction in a view-dependent manner with respect to each input camera. Joint optimisation prevents propagation of errors from segmentation to reconstruction as is often the case with sequential approaches. View-dependent processing increases tolerance to errors in on-the-fly calibration compared to global approaches. We evaluate our technique in the case of challenging outdoor sports scenes captured with manually operated broadcast cameras and demonstrate its suitability for high-quality free-viewpoint video.
机译:当在受控捕获条件下使用时,当前基于图像的最新场景重建技术能够生成高保真3D模型。然而,当在更具挑战性的户外环境中使用移动摄像机时,它们通常不足。在这种情况下,算法必须能够应对较大的校准和分割误差,以及由宽基线分隔并可能以不同分辨率捕获的输入图像。在本文中,我们提出了一种技术,在这些挑战性条件下,能够通过结合多个图像线索和先验先验的能量函数的图割优化来有效地计算高质量的场景表示。通过针对每个输入摄像机以视点相关的方式共同优化场景分割和多视点重构来实现鲁棒性。联合优化可以防止错误从分段传播到重构,这是顺序方法经常遇到的情况。与全局方法相比,依赖视图的处理提高了对动态校准中错误的容忍度。我们在有挑战性的户外运动场景(使用手动操作的广播摄像机拍摄)的情况下评估了我们的技术,并证明了其适用于高质量的自由视点视频。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号