首页> 外文会议>IEEE International Conference on Computer Vision;ICCV 2009 >Dimensionality reduction and principal surfaces via Kernel Map Manifolds
【24h】

Dimensionality reduction and principal surfaces via Kernel Map Manifolds

机译:通过内核映射歧管进行降维和主曲面

获取原文

摘要

We present a manifold learning approach to dimensionality reduction that explicitly models the manifold as a mapping from low to high dimensional space. The manifold is represented as a parametrized surface represented by a set of parameters that are defined on the input samples. The representation also provides a natural mapping from high to low dimensional space, and a concatenation of these two mappings induces a projection operator onto the manifold. The explicit projection operator allows for a clearly defined objective function in terms of projection distance and reconstruction error. A formulation of the mappings in terms of kernel regression permits a direct optimization of the objective function and the extremal points converge to principal surfaces as the number of data to learn from increases. Principal surfaces have the desirable property that they, informally speaking, pass through the middle of a distribution. We provide a proof on the convergence to principal surfaces and illustrate the effectiveness of the proposed approach on synthetic and real data sets.
机译:我们提出了一种用于降维的流形学习方法,该方法将流形明确建模为从低维空间到高维空间的映射。歧管表示为由在输入样本上定义的一组参数表示的参数化曲面。该表示法还提供了从高维空间到低维空间的自然映射,并且这两个映射的串联将投影算符引到流形上。显式投影算子可以根据投影距离和重建误差明确定义目标函数。用核回归的方式表示映射关系,可以直接优化目标函数,并且随着从中学习的数据数量的增加,极点收敛到主表面。主表面具有理想的属性,非正式地说,它们通过分布的中间。我们提供了到主表面收敛性的证明,并说明了该方法在合成和真实数据集上的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号