首页> 外文会议>IEEE International Conference on Computational Science and Engineering >Short-Term Traffic Flow Forecasting Using a Distributed Spatial-Temporal k Nearest Neighbors Model
【24h】

Short-Term Traffic Flow Forecasting Using a Distributed Spatial-Temporal k Nearest Neighbors Model

机译:分布式时空k最近邻模型的短期交通流量预测

获取原文

摘要

Accurate and timely information on the current and predicted traffic flows is important for the successful deployment of intelligent transport systems. These data plays an essential role in traffic management and control. Using traffic flow information, travelers could plan the routes to avoid traffic congestion, reduce travel time, environmental pollution, and improve traffic operation efficiency in general. In this paper, we propose a distributed model for short-term traffic flow prediction based on the k nearest neighbors method, that takes into account spatial and temporal traffic flow distribution. The proposed model is implemented as a MapReduce based algorithm on an Apache Spark framework. An experimental study of the proposed model is carried out on a traffic flow data in transportation network of Samara, Russia.
机译:有关当前和预测的交通流量的准确,及时的信息对于成功部署智能交通系统至关重要。这些数据在流量管理和控制中起着至关重要的作用。旅客可以使用交通流信息来规划路线,从而避免交通拥堵,减少出行时间,减少环境污染并总体上提高交通运营效率。在本文中,我们提出了一种基于k最近邻方法的短期交通流量预测的分布式模型,该模型考虑了时空交通流量的分布。提出的模型在Apache Spark框架上实现为基于MapReduce的算法。对俄罗斯萨马拉的交通网络中的交通流量数据进行了该模型的实验研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号