首页> 外文期刊>Neurocomputing >A distributed spatial-temporal weighted model on MapReduce for short-term traffic flow forecasting
【24h】

A distributed spatial-temporal weighted model on MapReduce for short-term traffic flow forecasting

机译:基于MapReduce的分布式时空加权模型,用于短期交通流量预测

获取原文
获取原文并翻译 | 示例

摘要

Accurate and timely traffic flow prediction is crucial to proactive traffic management and control in data driven intelligent transportation systems ((DITS)-I-2), which has attracted great research interest in the last few years. In this paper, we propose a Spatial-Temporal Weighted K-Nearest Neighbor model, named STW-KNN, in a general MapReduce framework of distributed modeling on a Hadoop platform, to enhance the accuracy and efficiency of short-term traffic flow forecasting. More specifically, STW-KNN considers the spatial-temporal correlation and weight of traffic flow with trend adjustment features, to optimize the search mechanisms containing state vector, proximity measure, prediction function, and K selection. Furthermore, STW-KNN is implemented on a widely adopted Hadoop distributed computing platform with the MapReduce parallel processing paradigm, for parallel prediction of traffic flow in real time. Finally, with extensive experiments on real-world big taxi trajectory data, STW-KNN is compared with the state-of-the-art prediction models including conventional K-Nearest Neighbor (KNN), Artificial Neural Networks (ANNs), Naive Bayes (NB), Random Forest (RF), and C4.5. The results demonstrate that the proposed model is superior to existing models on accuracy by decreasing the mean absolute percentage error (NAPE) value more than 11.59% only in time domain and even achieves 89.71% accuracy improvement with the MAPEs of between 3.34% and 6.00% in both space and time domains, and also significantly improves the efficiency and scalability of short-term traffic flow forecasting over existing approaches. (C) 2015 Elsevier B.V. All rights reserved.
机译:准确和及时的交通流量预测对于数据驱动的智能交通系统((DITS)-I-2)中的主动交通管理和控制至关重要,该技术在最近几年引起了极大的研究兴趣。在本文中,我们在Hadoop平台上的分布式建模通用MapReduce框架中,提出了一个时空加权K最近邻模型STW-KNN,以提高短期交通流量预测的准确性和效率。更具体地说,STW-KNN考虑具有趋势调整功能的交通流的时空相关性和权重,以优化包含状态矢量,邻近度,预测功能和K选择的搜索机制。此外,STW-KNN在具有MapReduce并行处理范例的广泛采用的Hadoop分布式计算平台上实现,可实时并行预测流量。最后,通过对现实世界中较大的滑行轨迹数据进行广泛的实验,将STW-KNN与最新的预测模型进行了比较,包括传统的K最近邻(KNN),人工神经网络(ANN),朴素贝叶斯(Naive Bayes)( NB),随机森林(RF)和C4.5。结果表明,通过在时域上仅将平均绝对百分比误差(NAPE)值降低超过11.59%,所提出的模型在准确性上优于现有模型,并且当MAPE在3.34%至6.00%之间时,甚至可以达到89.71%的准确性提高在时域和时域上,还可以大大提高短期交通流量预测的效率和可扩展性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第29期|246-263|共18页
  • 作者单位

    Southwest Univ, Sch Comp & Informat Sci, Chongqing 400715, Peoples R China|Guizhou Minzu Univ, Sch Informat Engn, Guiyang 550025, Peoples R China;

    Southwest Univ, Sch Comp & Informat Sci, Chongqing 400715, Peoples R China;

    Southwest Univ, Sch Elect & Informat Engn, Chongqing 400715, Peoples R China;

    Southwest Univ, Sch Comp & Informat Sci, Chongqing 400715, Peoples R China;

    Southwest Univ, Sch Comp & Informat Sci, Chongqing 400715, Peoples R China|Deakin Univ, Sch Informat Technol, Geelong, Vic 3220, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Neural networks; Short-term traffic flow forecasting; Distributed modeling; Parallel algorithm; Big taxi trajectory data; MapReduce;

    机译:神经网络;短期交通流量预测;分布式建模;并行算法;大滑行轨迹数据;MapReduce;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号