首页> 外文会议>IEEE International Conference on Cognitive Computing >An Opinion Diversity Enhanced Social Connection Recommendation Re-Ranking Method Based on Opinion Distance in Cyber Argumentation with Social Networking
【24h】

An Opinion Diversity Enhanced Social Connection Recommendation Re-Ranking Method Based on Opinion Distance in Cyber Argumentation with Social Networking

机译:基于社交网络的网络辩论中基于意见距离的意见多样性增强社交联系推荐重排方法

获取原文

摘要

The quality of crowd wisdom extracted from online communities decreases as the community becomes less ideologically diverse, which is an issue in many online spaces. One cause of this decline is that users tend not to engage with diverse, idea-challenging content that contrasts their prior opinions. However, they do tend to engage with content endorsed by their social connections, even if it goes against their personal opinion. Thus, by increasing the diversity of opinion in a user's social network, they will likely engage with more diverse content. We are developing a cyber argumentation system with social networking and present a social connection recommendation re-ranking method that promotes opinion diversity. We use artificial intelligence and data mining techniques to mine and analyze user opinions from argumentation data on important issues, then use furthest opinion distance to re-rank the recommendations. Our method is designed to easily integrate with existing social connection recommenders, which preserves platform specific criteria. We compare the opinion diversity of recommendations from five types of social connection recommendation methods, with and without our re-ranking method, on a large empirical dataset. Our results show that our method improves the recommended diversity by around 15% for five existing social connection recommendation methods, while only reordering around 50% of the initial social connection recommendations.
机译:随着社区在意识形态上的多样性变少,从在线社区中提取的群众智慧的质量下降,这在许多在线空间中都是一个问题。造成这种下降的原因之一是,用户倾向于不使用与他们先前观点相反的,具有挑战性的多样化内容。但是,即使他们的个人观点与他们的社交观点背道而驰,他们的确倾向于与他们互动。因此,通过增加用户社交网络中观点的多样性,他们可能会参与更多不同的内容。我们正在开发具有社交网络的网络辩论系统,并提出一种促进意见多元化的社交联系推荐重新排序方法。我们使用人工智能和数据挖掘技术从重要问题的论点数据中挖掘和分析用户意见,然后使用最远的意见距离对建议进行重新排序。我们的方法旨在轻松与现有的社交联系推荐者集成,从而保留特定于平台的标准。我们在大型经验数据集上比较了五种类型的社交联系推荐方法(无论是否使用我们的重新排名方法)的推荐意见多样性。我们的结果表明,对于五种现有的社交联系推荐方法,我们的方法将推荐多样性提高了约15%,而仅对初始社交联系推荐的约50%进行了重新排序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号