首页> 外文会议>IEEE International Conference on Cognitive Computing >Scaling Deep Spiking Neural Networks with Binary Stochastic Activations
【24h】

Scaling Deep Spiking Neural Networks with Binary Stochastic Activations

机译:扩展具有二进制随机激活的深尖刺神经网络

获取原文

摘要

The modern era has witnessed a proliferation of portable devices that use Artificial Intelligence (AI) to enhance user experiences. Majority of these AI tasks are performed by large neural networks, which require a good amount of memory and compute power. This has resulted in a growing interest in Spiking Neural Networks (SNNs) which communicate through binary activations or 'spikes', as they offer a bio-plausible and energy efficient alternative to traditional deep neural networks (DNNs). In this work, we present deep spiking neural networks with binary stochastic activations, that are tailored for implementation on emerging hardware platforms. We evaluate two deep neural network models, VGG-9 and VGG-16 on CIFAR-10 and CIFAR-100 datasets, respectively, with binary stochastic activations. We achieve state of the accuracy and achieve 1.4x improvement in energy consumption because of spike-based communication versus a network with ReLU neurons. We further investigate extremely quantized version of these networks having binary weights and show an energy benefit of 28x over full-precision neural networks. Thus we present scalable deep spiking neural networks that achieve performance comparable to DNNs while achieving substantial energy benefit.
机译:现代时代见证了使用人工智能(AI)增强用户体验的便携式设备的泛滥。这些AI任务大部分由大型神经网络执行,这需要大量的内存和计算能力。这导致人们对尖峰神经网络(SNN)产生了越来越多的兴趣,这种神经通过二进制激活或“尖峰”进行通信,因为它们为传统的深层神经网络(DNN)提供了生物上可行且节能的替代方案。在这项工作中,我们提出了具有二进制随机激活的深层神经网络,这些神经网络是为在新兴的硬件平台上实现而量身定制的。我们使用二进制随机激活分别评估了CIFAR-10和CIFAR-100数据集上的两个深度神经网络模型VGG-9和VGG-16。与基于ReLU神经元的网络相比,基于尖峰的通信使我们达到了精确的状态并实现了1.4倍的能耗降低。我们进一步研究了具有二进制权重的这些网络的极端量化版本,并显示了比全精度神经网络高28倍的能源优势。因此,我们提出了可扩展的深峰神经网络,该网络在实现可观的能源效益的同时,可实现与DNN相当的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号