首页> 外文会议>IEEE International Conference on Biomedical Robotics and Biomechatronics >Toward a Better Robotic Hand Prosthesis Control: Using EMG and IMU Features for a Subject Independent Multi Joint Regression Model
【24h】

Toward a Better Robotic Hand Prosthesis Control: Using EMG and IMU Features for a Subject Independent Multi Joint Regression Model

机译:寻求更好的机器人手部假体控制:使用EMG和IMU功能建立独立于受试者的多关节回归模型

获取原文

摘要

Ahstract- The interest on wearable prosthetic devices has boost the research for a robust framework to help injured subjects to regain their lost functionality. A great number of solutions exploit physiological human signals, such as Electromyography (EMG), to naturally control the prosthesis, reproducing what happens in the human limbs. In this paper, we propose for the first time a way to integrate EMG signals with Inertial Measurement Unit (IMU) information, as a way to improve subject-independent models for controlling robotic hands. EMG data are very sensitive to both physical and physiological variations, and this is particularly true between different subjects. The introduction of IMUs aims at enriching the subject-independent model, making it more robust with information not strictly dependent from the physiological characteristics of the subject. We compare three different models: the first based on EMG solely, the second merging data from EMG and the 2 best IMUs available, and the third using EMG and IMUs information corresponding to the same 3 electrodes. The three techniques are tested on two different movements executed by 35 healthy subjects, by using a leave-one-out approach. The framework is able to estimate online the bending angles of the joints involved in the motion, obtaining an accuracy up to 0.8634. The resulting joint angles are used to actuate a robotic hand in a simulated environment.
机译:Ahstract-对可穿戴假体设备的兴趣推动了对一个健壮框架的研究,该框架可以帮助受伤的受试者恢复失去的功能。许多解决方案利用生理人体信号(例如肌电图(EMG))来自然地控制假体,重现人体四肢的状况。在本文中,我们首次提出了一种将EMG信号与惯性测量单元(IMU)信息相集成的方法,以此作为改进独立于对象的用于控制机械手的模型的方法。 EMG数据对身体和生理变化都非常敏感,在不同的受试者之间尤其如此。 IMU的引入旨在丰富与受试者无关的模型,使其在不严格依赖于受试者生理特征的信息下更加健壮。我们比较了三种不同的模型:第一种仅基于EMG,第二种来自EMG的合并数据和可用的2种最佳IMU,第三种使用对应于相同3个电极的EMG和IMU信息。通过留一法,对35名健康受试者执行的两种不同动作进行了三种技术的测试。该框架能够在线估计运动中所涉及的关节的弯曲角度,从而获得高达0.8634的精度。产生的关节角度用于在模拟环境中致动机器人手。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号