首页> 外文会议>IEEE International Conference on Adaptive Science and Technology >Application of Recurrent Neural Network Model in the Analysis of Electricity Load Demand in Ashanti Region of Ghana
【24h】

Application of Recurrent Neural Network Model in the Analysis of Electricity Load Demand in Ashanti Region of Ghana

机译:递归神经网络模型在加纳阿散蒂地区电力需求分析中的应用

获取原文

摘要

In order to supply electric energy to the customer in a secure and economic manner, an electric company faces many economical and technical challenges in operation. These challenges include scheduling, load flow analysis, planning and control of electric energy system. To address this problem, accurate models for electric power load forecasting are essential to the operation and planning of utility companies. The study used a data from the Ashanti East and Ashanti West Regions of the Electricity Company of Ghana. The data is a daily peak load for the whole year of 2014, 2015 and the first month of 2016 with a total of 752 samples. In this study three Recurrent Neural Network(RNN) with layered architecture models (RNN-1-10-1, RNN-1-15-1 and RNN-1-20-1) were developed to forecast the peak electricity load. The test results showed that the best model which forecast the peak load well is RNN-1-10-1 with minimum RMSE value.
机译:为了以安全和经济的方式向客户提供电能,电力公司在运营中面临许多经济和技术挑战。这些挑战包括调度,潮流分析,电力系统的计划和控制。为了解决这个问题,准确的电力负荷预测模型对于公用事业公司的运营和规划至关重要。该研究使用了加纳电力公司的Ashanti East和Ashanti West地区的数据。该数据是2014年,2015年和2016年第一月全年的每日峰值负载,共有752个样本。在这项研究中,开发了三个具有分层体系结构模型的递归神经网络(RNN)(RNN-1-10-1,RNN-1-15-1和RNN-1-20-1)来预测峰值电力负荷。测试结果表明,能够很好地预测峰值负载的最佳模型是RNN-1-10-1,其RMSE值最小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号