首页> 外文会议>IEEE International Conference on Adaptive Science and Technology >Optimizing Mining Track Equipment Undercarriage Shoe Life Using Convolution Neural Network
【24h】

Optimizing Mining Track Equipment Undercarriage Shoe Life Using Convolution Neural Network

机译:利用卷积神经网络优化矿山履带底盘靴的使用寿命

获取原文

摘要

The health of track undercarriage equipment in the mining and construction industry requires a high degree of oversight in enhancing equipment availability and reliability to improve the usage efficiency at minimal operational cost. There have been a great number of conditions monitoring techniques employed to monitor the wear rate of track shoes of these undercarriages. The most current and more advanced one is the ultrasonic wear indicator. Although this monitoring equipment gives accurate results, the challenge is the involvement of experts that go through vigorous training with voluminous training manual, and spending a lot of time on inspecting the track equipment. To minimize some of these challenges, this paper has proposed an Artificial Intelligent (AI) system that employs Convolution Neural Network (CNN) with track shoe images to predict the wear rate in a safer, efficient and faster manner. The system was developed, trained and evaluated on eight hundred and seventy-six (876) image data set. The results indicates that our system out performs other techniques in terms of efficiency and speed while at the same time eliminating the need of experts.
机译:采矿和建筑业中履带式底盘设备的健康状况需要高度监督,以提高设备可用性和可靠性,以最小的运营成本提高使用效率。已经采用了许多条件监测技术来监测这些起落架的履带板的磨损率。最新,最先进的一种是超声波磨损指示器。尽管此监控设备能够提供准确的结果,但挑战在于专家的参与,他们需要经过大量培训和大量的培训手册,并花费大量时间来检查轨道设备。为了最大程度地减少这些挑战,本文提出了一种人工智能(AI)系统,该系统采用卷积神经网络(CNN)和履带板图像来以更安全,有效和更快的方式预测磨损率。该系统是根据八百七十六(876)个图像数据集开发,训练和评估的。结果表明,我们的系统在效率和速度方面执行了其他技术,同时消除了对专家的需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号